
Chapter 8

Performing Repetitive Tasks
In This Chapter

▶ Performing a task a specific number of times

▶ Performing a task until completion

▶ Placing one task loop within another

A

ll the examples in the book so far have performed a series of steps just
one time and then stopped. However, the real world doesn’t work this

way. Many of the tasks that humans perform are repetitious. For example,
the doctor might state that you need to exercise more and tell you to do 100
push-ups each day. If you just do one push-up, you won’t get much benefit
from the exercise and you definitely won’t be following the doctor’s orders.
Of course, because you know precisely how many push-ups to do, you can
perform the task a specific number of times. Python allows the same sort of
repetition using the for statement.

Unfortunately, you don’t always know how many times to perform a task.
For example, consider needing to check a stack of coins for one of extreme
rarity. Taking just the first coin from the top, examining it, and deciding that
it either is or isn’t the rare coin doesn’t complete the task. Instead, you must
examine each coin in turn, looking for the rare coin. Your stack may contain
more than one. Only after you have looked at every coin in the stack can you
say that the task is complete. However, because you don’t know how many
coins are in the stack, you don’t know how many times to perform the task
at the outset. You only know the task is done when the stack is gone. Python
performs this kind of repetition using the while statement.

 Most programming languages call any sort of repeating sequence of events
a loop. The idea is to picture the repetition as a circle, with the code going
round and round executing tasks until the loop ends. Loops are an essential
part of application elements such as menus. In fact, writing most modern
applications without using loops would be impossible.

134 Part II: Talking the Talk

In some cases, you must create loops within loops. For example, to create a
multiplication table, you use a loop within a loop. The inner loop calculates
the column values and the outer loop moves between rows. You see such an
example later in the chapter, so don’t worry too much about understanding
precisely how such things work right now.

Processing Data Using the for Statement
The first looping code block that most developers encounter is the for state-
ment. It’s hard to imagine creating a conventional programming language
that lacks such a statement. In this case, the loop executes a fixed number of
times, and you know the number of times it will execute before the loop even
begins. Because everything about a for loop is known at the outset, for
loops tend to be the easiest kind of loop to use. However, in order to use one,
you need to know how many times to execute the loop. The following sec-
tions describe the for loop in greater detail.

Understanding the for statement
A for loop begins with a for statement. The for statement describes how
to perform the loop. The Python for loop works through a sequence of some
type. It doesn’t matter whether the sequence is a series of letters in a string
or items within a collection. You can even specify a range of values to use by
specifying the range() function. Here’s a simple for statement.

for Letter in "Howdy!":

The statement begins with the keyword for. The next item is a variable that
holds a single element of a sequence. In this case, the variable name is Letter.
The in keyword tells Python that the sequence comes next. In this case, the
sequence is the string "Howdy". The for statement always ends with a colon,
just as the decision-making statements described in Chapter 7 do.

Indented under the for statement are the tasks you want performed within
the for loop. Python considers every following indented statement part of
the code block that composes the for loop. Again, the for loop works just
like the decision-making statements in Chapter 7.

135 Chapter 8: Performing Repetitive Tasks

Creating a basic for loop
The best way to see how a for loop actually works is to create one. In this
case, the example uses a string for the sequence. The for loop processes
each of the characters in the string in turn until it runs out of characters. This
example also appears with the downloadable source code as SimpleFor.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

LetterNum = 1

for Letter in "Howdy!":
 print("Letter ", LetterNum, " is ", Letter)
 LetterNum+=1

 The example begins by creating a variable, LetterNum, to track the
number of letters that have been processed. Every time the loop com-
pletes, LetterNum is updated by 1.

 The for statement works through the sequence of letters in the string
"Howdy!". It places each letter, in turn, in Letter. The code that fol-
lows displays the current LetterNum value and its associated character
found in Letter.

 3. Choose Run➪Run Module.

 A Python Shell window opens. The application displays the letter
sequence along with the letter number, as shown in Figure 8-1.

Figure 8-1:

Use the

for loop to

process the

characters

in a string

one at a

time.

136 Part II: Talking the Talk

Controlling execution with
the break statement
Life is often about exceptions to the rule. For example, you might want
an assembly line to produce a number of clocks. However, at some point,
the assembly line runs out of a needed part. If the part isn’t available, the
assembly line must stop in the middle of the processing cycle. The count
hasn’t completed, but the line must be stopped anyway until the missing
part is restocked.

Interruptions also occur in computers. You might be streaming data from an
online source when a network glitch occurs and breaks the connection; the
stream temporarily runs dry, so the application runs out of things to do even
though the set number of tasks isn’t completed.

 The break clause makes breaking out of a loop possible. However, you don’t
simply place the break clause in your code — you surround it with an if
statement that defines the condition for issuing a break. The statement might
say something like this: If the stream runs dry, then break out of the loop.

In this example, you see what happens when the count reaches a certain level
when processing a string. The example is a little contrived in the interest of
keeping things simple, but it reflects what could happen in the real world
when a data element is too long to process (possibly indicating an error con-
dition). This example also appears with the downloadable source code as
ForBreak.py.

 1. Open a Python File window.

 You see an editor where you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

Value = input("Type less than 6 characters: ")
LetterNum = 1

for Letter in Value:
 print("Letter ", LetterNum, " is ", Letter)
 LetterNum+=1
 if LetterNum > 6:
 print("The string is too long!")
 break

137 Chapter 8: Performing Repetitive Tasks

 This example builds on the one found in the previous section. However,
it lets the user provide a variable-length string. When the string is longer
than six characters, the application stops processing it.

 The if statement contains the conditional code. When LetterNum is
greater than 6, it means that the string is too long. Notice the second
level of indentation used for the if statement. In this case, the user sees
an error message stating that the string is too long, and then the code
executes a break to end the loop.

 3. Choose Run➪Run Module.

 You see a Python Shell window open with a prompt asking for input.

 4. Type Hello and press Enter.

 The application lists each character in the string, as shown in Figure 8-2.

 5. Perform Steps 3 and 4 again, but type I am too long. instead of Hello.

 The application displays the expected error message and stops process-
ing the string at character 6, as shown in Figure 8-3.

Figure 8-2:

A short

string is

successfully

processed

by the

application.

 This example adds length checking to your repertoire of application data error
checks. Chapter 7 shows how to perform range checks, which ensure that a
value meets specific limits. The length check is necessary to ensure that data,
especially strings, aren’t going to overrun the size of data fields. In addition,
a small input size makes it harder for intruders to perform certain types of
hacks on your system, which makes your system more secure.

138 Part II: Talking the Talk

Figure 8-3:

Long strings

are trun-

cated to

ensure that

they remain

a certain

size.

Controlling execution with
the continue statement
Sometimes you want to check every element in a sequence, but don’t want
to process certain elements. For example, you might decide that you want
to process all the information for every car in a database except brown cars.
Perhaps you simply don’t need the information about that particular color of
car. The break clause simply ends the loop, so you can’t use it in this situa-
tion. Otherwise, you won’t see the remaining elements in the sequence.

 The break clause alternative that many developers use is the continue
clause. As with the break clause, the continue clause appears as part of
an if statement. However, processing continues with the next element in the
sequence rather than ending completely.

139 Chapter 8: Performing Repetitive Tasks

The following steps help you see how the continue clause differs from the
break clause. In this case, the code refuses to process the letter w, but will
process every other letter in the alphabet. This example also appears with
the downloadable source code as ForContinue.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

LetterNum = 1

for Letter in "Howdy!":
 if Letter == "w":
 continue
 print("Encountered w, not processed.")
 print("Letter ", LetterNum, " is ", Letter)
 LetterNum+=1

 This example is based on the one found in the “Creating a basic for
loop” section, earlier in this chapter. However, this example adds an if
statement with the continue clause in the if code block. Notice the
print() function that is part of the if code block. You never see this
string printed because the current loop iteration ends immediately.

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application displays the letter
sequence along with the letter number, as shown in Figure 8-4. However,
notice the effect of the continue clause — the letter w isn’t processed.

Figure 8-4:

Use the

continue

clause

to avoid

processing

specific

elements.

140 Part II: Talking the Talk

Controlling execution with the pass clause
The Python language includes something not commonly found in other lan-
guages: a second sort of continue clause. The pass clause works almost
the same way as the continue clause does, except that it allows completion
of the code in the if code block in which it appears. The following steps use
an example that is precisely the same as the one found in the previous sec-
tion, “Controlling execution with the continue statement,” except that it uses
a pass clause instead. This example also appears with the downloadable
source code as ForPass.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

LetterNum = 1

for Letter in "Howdy!":
 if Letter == "w":
 pass
 print("Encountered w, not processed.")
 print("Letter ", LetterNum, " is ", Letter)
 LetterNum+=1

 3. Choose Run➪Run Module.

 You see a Python Shell window open. The application displays the letter
sequence along with the letter number, as shown in Figure 8-5. However,
notice the effect of the pass clause — the letter w isn’t processed. In
addition, the example displays the string that wasn’t displayed for the
continue clause example.

 The continue clause makes it possible to silently bypass specific elements
in a sequence and to avoid executing any additional code for that element.
Use the pass clause when you need to perform some sort of post process-
ing on the element, such as logging the element in an error log, displaying a
message to the user, or handling the problem element in some other way. The
continue and pass clauses both do the same thing, but they’re used in dis-
tinctly different situations.

141 Chapter 8: Performing Repetitive Tasks

Figure 8-5:

Using the

pass

clause

allows

for post

process-

ing of an

unwanted

input.

Controlling execution with
the else statement
Python has another loop clause that you won’t find with other languages: else.
The else clause makes executing code possible even if you have no elements to
process in a sequence. For example, you might need to convey to the user that
there simply isn’t anything to do. In fact, that’s what the following example does.
This example also appears with the downloadable source code as ForElse.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

Value = input("Type less than 6 characters: ")
LetterNum = 1

for Letter in Value:
 print("Letter ", LetterNum, " is ", Letter)
 LetterNum+=1
else:
 print("The string is blank.")

142 Part II: Talking the Talk

 This example is based on the one found in the “Creating a basic for loop”
section, earlier in the chapter. However, when a user presses Enter with-
out typing something, the else clause is executed.

 3. Choose Run➪Run Module.

 You see a Python Shell window open and a prompt asking for input.

 4. Type Hello and press Enter.

 The application lists each character in the string, as shown in Figure 8-2.

 5. Repeat Steps 3 and 4. However, simply press Enter instead of entering
any sort of text.

 You see the alternative message shown in Figure 8-6 that tells you the
string is blank.

Figure 8-6:

The else

clause

makes it

possible

to perform

tasks based

on an empty

sequence.

 It’s easy to misuse the else clause because an empty sequence doesn’t always
signify a simple lack of input. An empty sequence could also signal an applica-
tion error or other conditions that need to be handled differently from a simple
omission of data. Make sure you understand how the application works with
data to ensure that the else clause doesn’t end up hiding potential error condi-
tions, rather than making them visible so that they can be fixed.

143 Chapter 8: Performing Repetitive Tasks

Processing Data Using
the while Statement

You use the while statement for situations when you’re not sure how much
data the application will have to process. Instead of instructing Python to
process a static number of items, you use the while statement to tell Python
to continue processing items until it runs out of items. This kind of loop is
useful when you need to perform tasks such as downloading files of unknown
size or streaming data from a source such as a radio station. Any situation in
which you can’t define at the outset how much data the application will pro-
cess is a good candidate for the while statement that is described more fully
in the sections that follow.

Understanding the while statement
The while statement works with a condition rather than a sequence. The
condition states that the while statement should perform a task until the
condition is no longer true. For example, imagine a deli with a number of cus-
tomers standing in front of the counter. The salesperson continues to service
customers until no more customers are left in line. The line could (and proba-
bly will) grow as the other customers are handled, so it’s impossible to know
at the outset how many customers will be served. All the salesperson knows
is that continuing to serve customers until no more are left is important. Here
is how a while statement might look:

while Sum < 5:

The statement begins with the while keyword. It then adds a condition.
In this case, a variable, Sum, must be less than 5 for the loop to continue.
Nothing specifies the current value of Sum, nor does the code define how the
value of Sum will change. The only thing that is known when Python executes
the statement is that Sum must be less than 5 for the loop to continue per-
forming tasks. The statement ends with a colon and the tasks are indented
below the statement.

 Because the while statement doesn’t perform a series of tasks a set number
of times, creating an endless loop is possible, meaning that the loop never
ends. For example, say that Sum is set to 0 when the loop begins, and the
ending condition is that Sum must be less than 5. If the value of Sum never
increases, the loop will continue executing forever (or at least until the com-
puter is shut down). Endless loops can cause all sorts of bizarre problems on
systems, such as slowdowns and even computer freezes, so it’s best to avoid

144 Part II: Talking the Talk

them. You must always provide a method for the loop to end when using a
while loop (contrasted with the for loop, in which the end of the sequence
determines the end of the loop). So, when working with the while statement,
you must perform three tasks:

 1. Create the environment for the condition (such as setting Sum to 0).

 2. State the condition within the while statement (such as Sum < 5).

 3. Update the condition as needed to ensure that the loop eventually ends
(such as adding Sum+=1 to the while code block).

 As with the for statement, you can modify the default behavior of the while
statement. In fact, you have access to the same four clauses to modify the
while statement behavior:

 ✓ break: Ends the current loop.

 ✓ continue: Immediately ends processing of the current element.

 ✓ pass: Ends processing of the current element after completing the state-
ments in the if block.

 ✓ else: Provides an alternative processing technique when conditions
aren’t met for the loop.

Using the while statement
in an application
You can use the while statement in many ways, but this first example is
straightforward. It simply displays a count based on the starting and ending
condition of a variable named Sum. The following steps help you create and
test the example code. This example also appears with the downloadable
source code as SimpleWhile.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

Sum = 0

while Sum < 5:
 print(Sum)
 Sum+=1

145 Chapter 8: Performing Repetitive Tasks

 The example code demonstrates the three tasks you must perform when
working with a while loop in a straightforward manner. It begins by set-
ting Sum to 0, which is the first step of setting the condition environment.
The condition itself appears as part of the while statement. The end of
the while code block accomplishes the third step. Of course, the code
displays the current value of Sum before it updates the value of Sum.

 A while statement provides flexibility that you don’t get with a for state-
ment. This example shows a relatively straightforward way to update Sum.
However, you can use any update method required to meet the goals of
the application. Nothing says that you have to update Sum in a specific
manner. In addition, the condition can be as complex as you want it to be.
For example, you can track the current value of three or four variables
if so desired. Of course, the more complex you make the condition, the
more likely it is that you’ll create an endless loop, so you have a practical
limit as to how complex you should make the while loop condition.

 3. Choose Run➪Run Module.

 Python executes the while loop and displays the numeric sequence
shown in Figure 8-7.

Figure 8-7:

The simple

while

loop dis-

plays a

sequence of

numbers.

Nesting Loop Statements
In some cases, you can use either a for loop or a while loop to achieve
the same effect. The manners work differently, but the effect is the same.
In this example, you create a multiplication table generator by nesting a
while loop within a for loop. Because you want the output to look nice,
you use a little formatting as well (Chapter 11 provides you with detailed
instruction in this regard). This example also appears with the download-
able source code as ForElse.py.

146 Part II: Talking the Talk

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

X = 1
Y = 1

print ('{:>4}'.format(' '), end= ' ')

for X in range(1, 11):
 print('{:>4}'.format(X), end=' ')

print()

for X in range(1,11):
 print('{:>4}'.format(X), end=' ')
 while Y <= 10:
 print('{:>4}'.format(X * Y), end=' ')
 Y+=1
 print()
 Y=1

 This example begins by creating two variables, X and Y, to hold the row
and column value of the table. X is the row variable and Y is the column
variable.

 To make the table readable, this example must create a heading at the
top and another along the side. When users see a 1 at the top and a 1
at the side, and follow these values to where they intersect in the table,
they can see the value of the two numbers when multiplied.

 The first print() statement adds a space (because nothing appears in
the corner of the table; see Figure 8-8 to more easily follow this discus-
sion). All the formatting statement says is to create a space 4 characters
wide and place a space within it. The {:>4} part of the code determines
the size of the column. The format(' ') function determines what
appears in that space. The end attribute of the print() statement
changes the ending character from a carriage return to a simple space.

 The first for loop displays the numbers 1 through 10 at the top of
the table. The range() function creates the sequence of numbers for
you. When using the range() function, you specify the starting value,
which is 1 in this case, and one more than the ending value, which is
11 in this case.

147 Chapter 8: Performing Repetitive Tasks

 At this point, the cursor is sitting at the end of the heading row. To
move it to the next line, the code issues a print() call with no other
information.

 Even though the next bit of code looks quite complex, you can figure it out
if you look at it a line at a time. The multiplication table shows the values
from 1 * 1 to 10 * 10, so you need ten rows and ten columns to display the
information. The for statement tells Python to create ten rows.

 Look again at Figure 8-8 to note the row heading. The first print()
call displays the row heading value. Of course, you have to format this
information, and the code uses a space of four characters that end with
a space, rather than a carriage return, in order to continue printing infor-
mation in that row.

 The while loop comes next. This loop prints the columns in an indi-
vidual row. The column values are the multiplied values of X * Y. Again,
the output is formatted to take up four spaces. The while loop ends
when Y is updated to the next value using Y+=1.

 Now you’re back into the for loop. The print() statement ends the
current row. In addition, Y must be reset to 1 so that it’s ready for the
beginning of the next row, which begins with 1.

 3. Choose Run➪Run Module.

 You see the multiplication table shown in Figure 8-8.

Figure 8-8:

The multipli-

cation table

is pleasing

to the eye

thanks to its

formatting.

148 Part II: Talking the Talk

